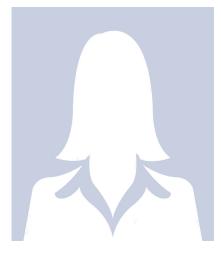



Team 309: Sprinter Data Collection



Members

Adam Breindel, EIT

Electrical Engineer

Systems Engineer

Lucero Cruz

Electrical Engineer

Applications Engineer

Stephanie Damas *Electrical Engineer*

Team Lead

Christian Gazmuri

Electrical & Computer

Engineer

Lead Computer Engineer

Beauponte Mezonlin

Electrical Engineer

Lead Electrical Engineer

Sponsor

FSU Athletics

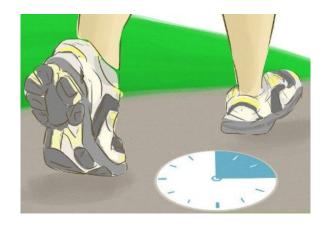
Sponsors:

Robert Hickner, PhD
Michael Ormsbee, PhD, FACSM, FISSN, CSCS

Motivation

- To improve the performance of the sprinter
- Solution To create an affordable device that can help coaches analyze sprinter data

Project Background


- Sprinting: running over a short distance in a limited period of time.
- Sprinter performance is influenced by multiple factors such as:

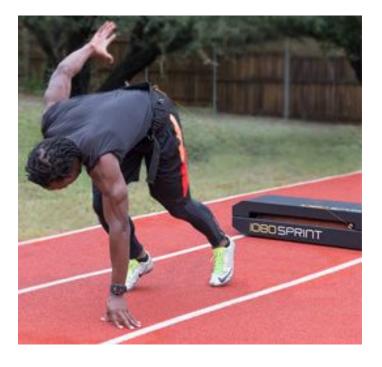
→ Start Technique

→ Stride Length

→ Stride Frequency

- → weight, height, speed, force
- To better understand the performance characteristics of the athlete, high technology data collection devices are being implemented.

Market Competition


Capability	Devices			
	1080 Motion	Zepp Play	StatSports	Our Vision
Force	✓	X	X	X
Acceleration	✓	✓	✓	✓
Speed	✓	✓	✓	√
Stride Length	×	×	×	✓
Stride Frequency	×	×	×	√
Distance	×	√	√	✓
Deceleration	X	X	√	X
Active Time (Productivity)	×	√	×	×

Competition (con't)

Zepp Play

StatSports

1080 Motion

Project Scope

Project Description: A product that improves data tracking for sprinters/runners.

Goal: Create an alternative to devices already established for tracking runner data that is more cost effective, providing similar or improved data sampling for the sprinters/runners.

Assumptions: Must be applicable for all running athletes (must consider different statutes) and slightly different environment, initial start of distance ran will be primarily focused on.

Market Breakdown

Primary Market: Professional Running Athletes and D1 teams.

Secondary Market: High school Track Athletes, D2 and D3 teams.

Stakeholders: FSU Track Team, FSU Athletics, Dr. Chuy, Dr. Kwan, Dr.

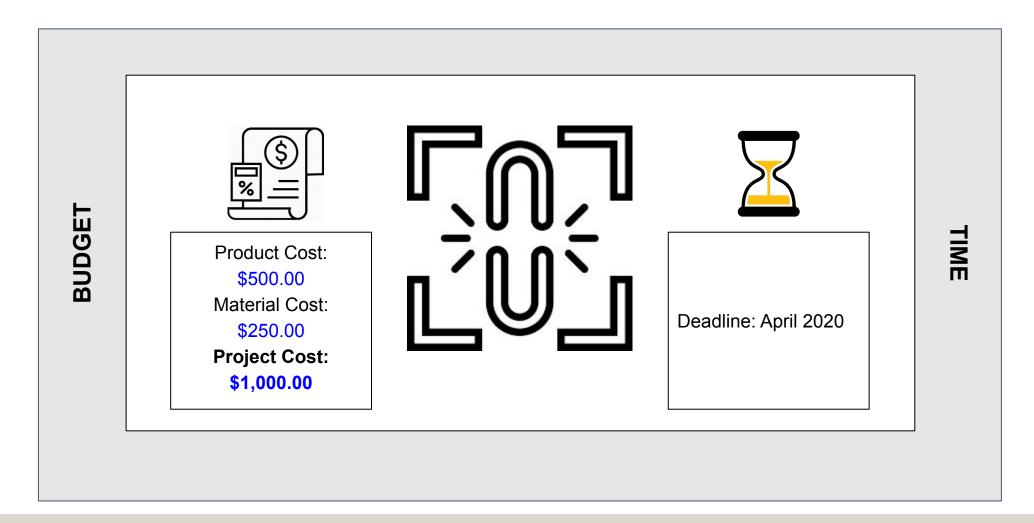
Debrunner, USA Track & Field (USATF).

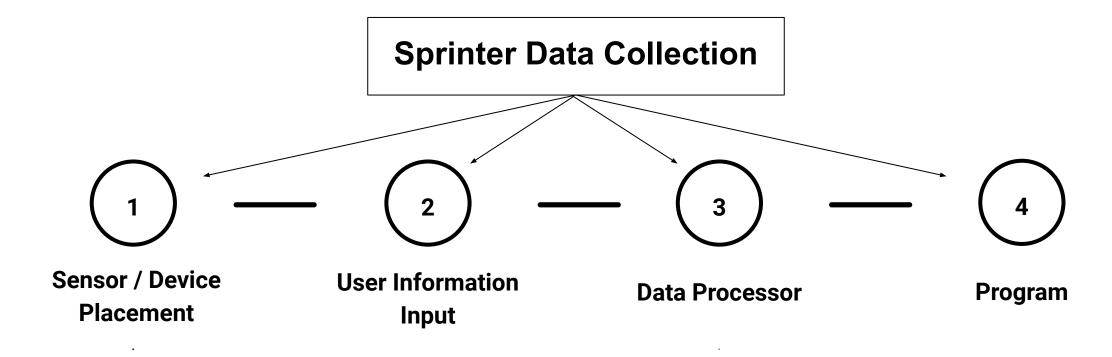
Customer Needs

Program

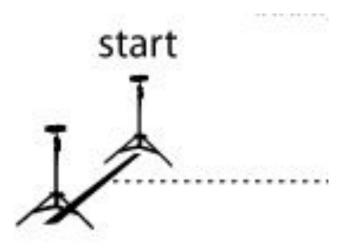
Device

- 1. A program that provides output data such as stride length, stride frequency, acceleration, and top speed
- 2. A program that allows the runner to input height and weight
- 3. A program that is accurate in calculation, efficient in computation, and easy to use
- 4. A program that allows accessible input and output of the data
- 5. A device that is water/dirt resistant
- 6. A device that is affordable for considered market.
- 7. A device that uses hardware that is lightweight and will stay attached to the runner during sprints


Requirements

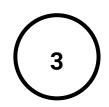

Need	Requirement	
1, 4	Have outputs displayed on a screen	
2, 4	Allow user to enter data as input	
7	Net weight less than 4 oz.	
5	Waterproof hardware	
3	Portable bases that connect to sensors wirelessly	

Constraints



Sensor / Device Placement

- Placement of devices
 - Sensors on runner
 - Base



User Information Input

- User Information Input
 - Allow for multiple runners
 - Information stored
 - Name
 - Height
 - Weight

Data Processor

- Data Processor
 - Read and interpret sensor input data
 - Compute the following that can be retrieved by program
 - Top speed
 - Acceleration through intervals
 - Stride length
 - Stride frequency

Program

Program

- Variety of operator controls used
- Ability to save or erase runs
- Display useful data
- Feature to view changes in data / changes over time

Project Summary

- Goals:
 - Assist coaches and sprinters in viewing runner data
 - Focus on device being low cost and accurate
- Give viewable outputs:
 - Stride length
 - Stride frequency
 - Acceleration through different intervals
 - Top speed

Next steps...

- Research
- Meet again with the coaches
- Concept generation
- Concept Selection
- Bill of Materials

Questions

